Binary Systems Containing Hydrocarbons

Note I. Miscibility Gaps in the Methylacetate + Alkanes Systems

Mario Rolla, Paolo Franzosini, Riccardo Riccardi, and Luigi Bottelli

Institute of Physical Chemistry, University of Pavia, Italy

(Z. Naturforschg. 21 a, 601-603 [1966]; received 9 February 1966)

The miscibility gaps below 0 $^{\circ}$ C in the binary liquid systems of methylacetate with 14 alkanes having a number of carbon atoms $n_{\rm C}$ between 5 and 9 have been measured. It has been shown how the coordinates of the critical solution points on the $(T_{\rm d}\,,\,N_{\rm alkane})$ plane are parabolic functions of $n_{\rm C}$ for the n-alkanes. Moreover, according to Malesinska, a generalized demixing curve has been drawn on the $(T_{\rm d}/T_{\rm max},z)$ plane.

The literature reports about 6,000 cases of binary systems in which two liquid phases in equilibrium coexist within certain ranges of temperature and composition. The entity of this volume of data, however, is more seeming than real, as most experiences are only qualitative: often the demixing curve is not drawn, but a single datum is given, as in the case of the so called "aniline points".

As regards the systems containing hydrocarbons, careful measurements of miscibility gaps (MG) are comparatively few, above all when the MG's lie below 0 °C. In particular, practically no information is available for the methylacetate (MeOAc) + alkanes mixtures: in his up to date tables Francis ¹, for the critical solution points (CSP) of this family of systems, reports only the following data:

MeOAc + n-heptane
$$t_{\rm max} < 15~^{\circ}{\rm C}$$
, $+ 2,2,4$ -trimethylpentane $< 15~^{\circ}{\rm C}$, $+ {\rm n\text{-}octadecane}$ $< 20~^{\circ}{\rm C}$.

Therefore, it was thought of interest to carry on a deeper research in this field. In the present paper we refer about the MG's in the binary liquid mixtures of MeOAc with: n-pentane (I) (99.98 mole %), isopentane (II) (99.99+), n-hexane (III) (99.96), 2-methylpentane (IV) (99.95), 3-methylpentane (V) (99.80), 2,2-dimethylbutane (VI) (99.99+), 2,3-dimethylbutane (VII) (99.87), n-heptane (VIII) (99.87), 2,4-dimethylpentane (IX) (99.72), n-octane (X) (99.81), 2,2,4-trimethylpentane (XI) (99.99), 2,3,4-trimethylpentane (XII) (99.50), n-nonane (XIII) (99.68) and 2,2,5-trimethylhexane (XIV) (99.78).

The alkanes (Fluk a puriss.) have been dried by contact with metal Na and then by flowing the vapours through a tube filled with P₂O₅; MeOAc (C. ErbaRP) has been treated and dried as described elsewhere ².

A visual method has been employed: as for apparatus, procedure, and some general remarks, we refer to previous papers ^{2, 3}.

Results

For each system the measurements have been taken in the widest concentration range, according to the possibility of observing in a clear and reproducible way the occurring of the opalescence that shows the beginning of the demixtion. The observation range was very narrow for the systems with (I) and (II), for which taking the demixing temperatures was also rather difficult: this is the reason why in Fig. 2 the data regarding these two systems are not shown.

In Table 1 the compositions of the samples as $N_{\rm alkane}$, together with the corresponding demixing temperatures $t_{\rm d}$ °C, taken by slowly cooling (<0.1 °/min) and shaking, are summarized.

In Table 2 the CSP coordinates $(N_{\rm alkane})_{\rm max}$ and $T_{\rm max}$ °K of the various systems are tabulated. As for n-alkanes, from the latter table it can be inferred that the $T_{\rm max}$ value increases progressively as the number of carbon atoms $n_{\rm C}$ increases. This occurs, as shown in Fig. 1 A, according to a parabolic law expressed by the equation

$$T_{\text{max}} = 178.23 + 9.35 \ n_{\text{C}} - 0.175 \ n_{\text{C}}^2$$
. (1)

³ P. Franzosini, Z. Naturforschg. 18 a, 224 [1963].

A. W. Francis, Critical Solution Temperatures, Advan. Chem. Ser. No. 31, Am. Chem. Soc. 1961.

² P. Franzosini, R. Riccardi, and M. Sanesi, Ric. Sci. 35 (II-A), 700 [1965].

Alkane	$N_{ m alkane}$	$-t_{\mathbf{d}}{}^{\circ}\mathbf{C}$	Alkane	$N_{ m alkane}$	$-t_{\mathbf{d}}$ °C	Alkane	$N_{ m alkane}$	$-t_{\mathbf{d}}^{\circ}\mathbf{C}$	Alkane	$N_{ m alkane}$	$-t_{\mathbf{d}}$ °C
(I)	0.320	54.0		0.535	50.3	(IX)	0.083	63.8	(XII)	0.076	62.8
. ,	0.334	53.7		0.587	50.7	, , , ,	0.115	56.7	1 ' '	0.105	55.5
	0.454	52.5		0.674	52.3		0.152	52.1	1	0.157	49.1
	0.477	52.6		0.681	52.9	1	0.242	46.9	1	0.218	45.9
	0.527	52.7		0.713	53.7		0.245	46.7	1	0.255	45.0
				0.839	62.9		0.368	45.6	1	0.311	44.5
(II)	0.274	59.3					0.413	45.6	1	0.425	44.5
, ,	0.382	56.5	(VI)	0.201	61.0		0.532	46.1		0.428	44.5
	0.423	56.3	1 ' '	0.202	60.7		0.580	46.7		0.586	46.4
	0.545	56.2	1	0.233	58.9		0.594	47.2		0.604	46.9
	0.565	56.3		0.233	59.0		0.670	49.7		0.616	47.4
	0.576	56.4		0.371	56.2		0.789	56.6		0.745	54.1
	0.587	56.6		0.395	56.1		0.870	66.6		0.843	64.2
		-		0.486	56.2						02.2
(III)	0.206	49.4		0.576	56.5	(X)	0.053	55.4	(XIII)	0.066	40.4
(===)	0.215	48.7	i	0.715	59.9	(/	0.086	44.6	(/	0.093	34.0
	0.360	45.3		0.725	60.4		0.104	41.0	1	0.152	27.7
	0.408	45.2		0.817	66.1		0.151	35.4		0.216	25.6
	0.467	45.2	(1771)				0.221	32.4		0.249	25.2
	0.532	45.3	(VII)	0.185	60.4		0.233	32.0		0.338	$25.2 \\ 25.0$
	0.532	45.4	1	0.189	60.5		0.311	31.4		0.341	25.0
	0.669	47.0	1	0.263	56.0		0.366	31.4		0.370	25.1
	0.747	50.9		0.345	54.7		0.422	31.4		0.448	25.6
				0.509	54.4		0.505	32.3		0.519	26.9
(IV)	0.201	53.4	1	0.557	54.9		0.643	36.4		0.629	30.9
(11)	0.228	51.7		0.709	57.5		0.699	39.4		0.756	40.1
	0.238	51.2		0.791	62.6		0.857	56.0		0.750	40.1
	0.282	49.8		0.824	64.7		0.001	00.0	(XIV)	0.089	48.2
	0.389	48.7	(VIII)	0.088	53.9	(XI)	0.060	68.5	(2211)	0.112	44.5
	0.460	48.7	(, 111)	0.132	46.1	(221)	0.110	55.1		0.112	43.6
	0.562	49.0		0.138	45.4	1	0.141	51.6		0.120	38.6
	0.583	49.3		0.160	43.3		0.207	47.5		0.208	37.8
	0.716	53.0		0.284	38.5		0.255	46.3		0.362	37.8
	0.739	54.3		0.376	38.1	1	0.365	45.9		0.302	38.6
	0.703	01.0		0.424	38.1		0.415	45.9		0.523	39.4
(V)	0.175	57.4		0.514	38.5		0.507	46.6		0.658	39.4 44.7
	0.256	52.0		0.556	39.2		0.561	47.5		0.038	51.2
	0.264	52.0		0.628	40.9		0.654	50.5		0.748	56.8
	0.384	50.2		0.028	46.0		0.685	52.2		0.003	50.8
	0.364	50.2		0.770	48.7		0.812	62.4			
	0.419	30.2		0.770	10.1		0.012	02.4			

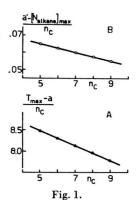
Table 1. Systems of methyl acetate with alkanes.

Alkane	$(N_{ m alkane})_{ m max}$	$T_{ m max}(^{\circ}{ m K})$		
(I)	about 0.5	220.6		
(II)	about 0.5	$217{2}$		
(III)	$0.45_0 \pm 0.005$	228.0		
(IV)	$0.45_0 \pm 0.005$	224.6		
(V)	$0.45_0 \pm 0.005$	223.0		
(VI)	$0.45_0 \pm 0.005$	217.1		
(VII)	$0.45_0 \pm 0.005$	218.9		
(VIII)	$0.40_5 \pm 0.005$	235.1		
(IX)	$0.40_5 \pm 0.005$	227.6		
(X)	$0.36_5 \pm 0.005$	241.9		
(XI)	$0.36_5 \pm 0.005$	227.3		
(XII)	$0.36_5\pm 0.005$	228.8		
(XIII)	$0.33_0\pm 0.005$	248.2		
(XIV)	$0.33_0\pm 0.005$	235.5		

Table 2. CSP's in the systems of methyl acetate with alkanes.

Moreover, the groups of alkanes having the same $n_{\rm C}$ show almost equal $(N_{\rm alkane})_{\rm max}$ values. As $n_{\rm C}$ in-

creases, $(N_{\rm alkane})_{\rm max}$ diminishes, following once more a parabolic law according to


$$(N_{\rm alkane})_{\rm max} = 0.825 - 0.077_5 \, n_{\rm C} + 0.002_5 \, n_{\rm C}^2$$
 (2)

as shown in Fig. 1 B.

Eqs. (1) and (2) are obviously valid only when $5 \leqq n_{\mathbb{C}} \leqq 9$.

Noteworthy is also what follows. On the $(t_{\rm d}$, $N_{\rm alkane})$ plane the demixing curves look rather asymmetrical. A procedure allowing to draw a symmetrical curve, common to the whole family of the systems studied, was proposed by Malesinska ⁴. According to this procedure, the compositions of the mixtures have been calculated as fractions z:

⁴ B. Malesinska, Bull. Acad. Polon. Sci., Sér. Sci. Chim. 8, 53 [1960].

Plots of the ratios $(T_{\rm max}-a)/n_{\rm C}$ and $[a'-(N_{\rm alkane})_{\rm max}]/n_{\rm C}$ vs. the number of carbon atoms $n_{\rm C}$ in the alkanes (a=178.23; a'=0.825). Fig. 1 A refers to n-alkanes only.

$$z_1' = N_1' q_1 / (N_1' q_1 + N_2' q_2), \quad z_2' = 1 - z_1',$$

 $z_1'' = N_1'' q_1 / (N_1'' q_1 + N_2'' q_2), \quad z_2'' = 1 - z_1''$

where 1 and 2 refer to MeOAc and to the alkane, while ' and " to the solutions of 1 into 2 and to those of 2 into 1, respectively. The asymmetry factors q_2/q_1 (considering that, for all systems, the ratios $N_1'\,N_1''/N_2'\,N_2''$, evaluated from the interpolated curves, show unsignificant fluctuations when changing the temperature) have been taken as independent from T. Moreover, for each mixture a reduced demixing temperature $T_{\rm d}/T_{\rm max}$ (with $T_{\rm d}$ and $T_{\rm max}$ in $^{\circ}{\rm K}$) has been calculated.

By plotting the experimental data on the $(T_{\rm d}/T_{\rm max}\,,z)$ plane, it has been seen that the MG's concerning the 12 systems with the C_6-C_9 alkanes can be represented by a single generalized demixing curve, which is symmetrical with respect to z=0.5 (see Fig. 2).

Acknowledgments

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research. The apparatus was partially built with the aid of the Consiglio Nazionale della Ricerche (Rome).

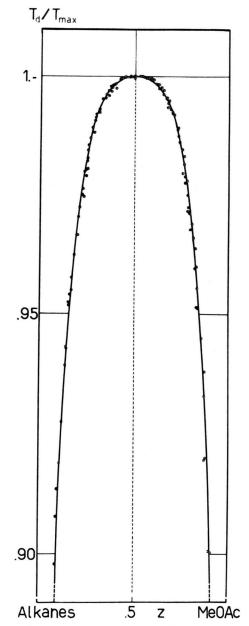


Fig. 2. Plot of reduced temperatures $T_{\rm d}/T_{\rm max}$ vs. fraction z for 12 systems formed by MeOAc with $C_{\rm 6}-C_{\rm 9}$ alkanes.